Recent Quarkonia Results from the PHENIX Experiment at RHIC

Alexandre Lebedev (ISU) for the PHENIX Collaboration

 10^{th} International Workshop on High p_T Physics in the RHIC/LHC Era 9-12 September 2014, SUBATECH Nantes, France

Quarkonia as a Probe of Deconfined Matter

Dissociation of quarkonium by color screening in deconfined matter is predicted to be different for different states. At T/T_C ~2.5 only J/ ψ and Y will survive.

Excellent tool to probe QGP....

...but only if we know all he references.

... need measurements for different energies, colliding species, quarkonium states, p_T and rapidity dependence...

The PHENIX Experiment

Quarkonium states are measured via di-lepton decays

Central Arms (electrons)

$$|\eta| < 0.35 \ \Delta \phi = 2 \times \pi/2$$

P > 0.2 *GeV*

Muon Arms

1.2 <
$$|\eta|$$
 < 2.2 $\Delta \phi = 2\pi$ P > 2 *GeV*

Lots of Data taken by PHENIX

PHENIX measured J/ ψ , ψ' , Y, χ_c at mid-rapidity, J/ ψ , ψ' and Y at forward/backward rapidity, from p+p through d+Au to U+U at \sqrt{s} from 39GeV to 200GeV.

Most recent results:

 J/ψ in U+U allows to extend system size study.

 J/ψ in Cu+Au asymmetric collisions: is R_{AA} also asymmetric?

 ψ' in d+Au – stronger than J/ ψ suppression observed.

Y in p+p and Au+Au at mid-rapidity and in d+Au at forward rapidity. test bottonium suppression – extending QGP thermometer, no coalescence expected.

Nuclear Modification Factor R_{AA}

$$R_{AA} = \frac{dN_{AA}^{J/\psi}/dy}{N_{coll} dN_{pp}^{J/\psi}/dy}$$

Yield in nucleus-nucleus collisions divided by p+p yields and scaled by the appropriate number of binary collisions N_{COLL}, which is calculated using Glauber model.

Spectator nucleons

Participating nucleons

Centrality of collision is described by number of participant nucleons N_{PART}

J/ψ in U+U: System Size Study

Qualitatively similar suppression from Cu+Cu to U+U.

Somewhat weaker suppression in central U+U collisions? Higher coalescence? (PRC 84, 054907, 2011)

J/ψ in Cu+Au: is R_{AA} also asymmetric?

Initial asymmetry should result in asymmetric distribution of final particle density:

- 1) Asymmetric CNM effects.
- 2) HNM effects possibly asymmetric.

The answer is yes, but not much: Au-going R_{AA} is somewhat larger.

J/ψ in Cu+Au compared to Au+Au

Similar, but somewhat smaller suppression in Cu+Au compared to Au+Au.

Cu-going R_{AA} more suppressed than Au-going.

J/ψ in Cu+Au: Cu-going/Au-going ratio

CNM = EPS09 + 4mb breakup (Phys. Rev. C84, 044911, 2011)

CNM effects:

Cu-going R_{AA} probes low x gluons in Au, J/ψ long proper crossing time.

Au-going R_{AA} probes low x in Cu, J/ψ short proper crossing time.

Observed R decreases with centrality.

ψ' in d+Au at mid-rapidity

PRL 111, 202301 (2013)

 ψ' is ~3 times more suppressed in most central collisions than $J/\psi.$ Very different trend with $N_{COLL}.$

Peripheral d+Au

Central d+Au

Relative modification of ψ'

Relative modification in *all* systems follows common trend with increasing produced particle density.

Co-mover (or medium) density seems to be the relevant quantity.

Upsilon measurement at mid-rapidity

arXiv:1404.2246

Y's are reconstructed in di-electron channel. Clear combined (1S+2S+3S) Y peak observed both in p+p and Au+Au

Upsilons in p+p

arXiv:1404.2246

Good baseline for studying Y suppression in AA collisions.

Upsilon suppression in Au+Au at mid-rapidity

Expected maximum R_{AA}:

No 2S and 3S: 0.65 ± 0.11

No 2S, 3S and χ_B : 0.37 ± 0.09

Measured R_{AA} consistent with melting of 2S+3S.

Consistent with LHC results for the same N_{PART} .

Upsilons in d+Au at forward rapidity

Phys. Rev. C 87, 044909 (2013)

Suppression consistent with NLO+EPS09 (R. Vogt, Phys. Rev. C81, 044903, 2010) trend but unable to constrain breakup cross section due to large experimental uncertainties.

Conclusions

 J/ψ R_{AA} is consistent between different colliding systems. ~20% differences despite expected variations in the CNM and QGP effects.

 J/ψ R_{AA} in Cu+Au collisions asymmetric, with Au-going R_{AA} larger.

 ψ' ~3 times more suppressed than J/ ψ in most central d+Au collisions.

First Y result from PHENIX shows suppression consistent with LHC results. Consistent with melting of Y(2S) and Y(3S).

Backup Slides

